
Wireless Intrusion Detection System
1*Keith Chettiar, 2Akshay Patil, 3Arpita Pradhan and 4 Ms. Sushama Khanvilkar

 1*, 2, 3, 4 Computer Department, Xavier Institute of Engineering,
Mahim, Mumbai, India.

Abstract— The rapid proliferation of wireless networks and
mobile computing applications has changed the landscape of
network security, the wireless networks have changed the way
business, organizations work and offered a new range of
possibilities and flexibilities; It is clear that wireless solutions
are transforming the way we work and live. Employees are
able to keep in touch with their e-mail, calendar and employer
from mobile devices, but on the other hand they have
introduced a new security threat. While an attacker needs
physical access to a wired network in order to gain access to
the network and to accomplish his goals, a wireless network
allows anyone within its range to passively monitor the traffic
or even start an attack. One of the countermeasures that can
be used in order to allow us to know both the threats affecting
our wireless network and our system vulnerabilities is the
Intrusion Detection System. WLANs have a number of
security-related issues. They are as follows:
1] Data interception
2] Denial Of Service (DOS)
3] Rogue APs.
4] Other 802.11 related security threats.
WLANs typically encompass a relatively large physical
coverage area. In this situation, many WAPs can be deployed
in order to provide adequate signal strength to the given area.
An essential aspect of implementing a Wireless IDS is to
deploy it wherever a WAP is located. By providing
comprehensive coverage of the physical infrastructure at all
WAP locations, the majority of attacks and misuse can be
detected.

Keywords— Libpcap; Libnet; Boyer-Moore; Sniffer Mode;
Packet Logger Mode; Intrusion Detection Mode; Barnyard2;
ADODB; Unified2; BASE.

I. INTRODUCTION
Threats to Wireless Local Area Networks (WLANs) are
numerous and potentially devastating. Security issues
ranging from misconfigured Wireless Access Points
(WAPs) to session hijacking to Denial of Service (DoS)
can plague a WLAN. Wireless networks are not only
susceptible to TCP/IP-based attacks native to wired
networks, they are also subject to a wide array of 802.11-
specific threats. To aid in the defence and detection of these
potential threats, WLANs should employ a security
solution that includes an Intrusion Detection System (IDS).
A Wireless Intrusion Detection System (WIDS) monitors
the radio spectrum for the presence of unauthorized, rogue
access points and the use of wireless attack tools. The
system monitors the radio spectrum used by Wireless
LANs, and immediately alerts the system administrator
whenever a rogue access point is detected. One such
Intrusion Detection System that we have used is Snort.

II. SNORT AS AN IDS

Snort is a free and open-source Network Intrusion
Prevention System and Network Intrusion Detection
System created by Martin Roesch in 1998; now maintained
by Sourcefire. Snort's Intrusion Detection System has the
ability to perform real-time traffic analysis and packet
logging on Internet Protocol (IP) networks. Snort performs
protocol analysis, content searching and content matching.
These basic services have many purposes including
application-aware triggered quality of service, to de-
prioritize bulk traffic when latency-sensitive applications
are in use.
Snort can be configured in three different modes: sniffer,
packet logger and intrusion detection. In sniffer mode, the
program will read network packets and display them on the
console. In packet logger mode, the program will log
packets to the disk. In intrusion detection mode, the
program will monitor network traffic and analyze it against
a rule set defined by the user. The program will then
perform a specific action based on what has been identified.

III. PREREQUISITES FOR SNORT

A. Capturing Packets using Libpcap
In the field of computer network administration,
libpcap is used for capturing network traffic. Libpcap
is almost the standard for grabbing packets off the wire
in snort and is used by many protocol-decoding
applications.

B. Data Acquisition library
Data Acquisition Library or DAQ, replaces direct calls
into packet capture libraries like libpcap with an
abstraction layer that makes it easy to add additional
software or hardware packet capture implementations.
The DAQ is essentially an abstraction layer and a suite
of pluggable modules that can be selected at run-time.
This makes switching from passive to inline mode easy,
and does not require a recompile of the snort core.

C. Libnet as an API
Libnet is an API to help with the construction and
handling of network packets. It is used in conjunction
with libpcap and it provides framework for low-level
network packet writing and handling. Libpcap includes
packet creation at the IP layer and at the link layer as
well as a host of supplementary and complementary
functionality.

I. ALGORITHMIC EFFICIENCY
In earlier days, snort used brute force pattern matching
which was slow and was seen as a place where
performance could be improvement. The first thing done to
boost performance was implementing a partial Boyer-

Keith Chettiar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1965-1968

www.ijcsit.com 1965

Moore pattern matching algorithm. After a couple of
months a full implementation of Boyer-Moore was
implemented[1].
The algorithm pre-processes the string being searched for
(the pattern), but not the string being searched in (the text).
It is thus well-suited for applications in which the pattern is
much shorter than the text or does persist across multiple
searches. The Boyer-Moore algorithm uses information
gathered during the pre-process step to skip sections of the
text, resulting in a lower constant factor than many other
string algorithms. In general, the algorithm runs faster as
the pattern length increases. The key feature of the
algorithm is to match on the tail of the pattern rather than
the head, and to skip along the text in jumps of multiple
characters rather than searching every single character in
the text.
The Boyer-Moore algorithm searches for occurrences of
pattern text by performing explicit character comparisons at
different alignments. Instead of a brute-force search of all
alignments (of which there are m - n + 1), Boyer-Moore
uses information gained by pre-processing pattern to skip
as many alignments as possible.
The algorithm scans the characters of the pattern from right
to left beginning with the rightmost one. In case of a
mismatch (or a complete match of the whole pattern) it uses
two pre-computed functions to shift the window to the right.
These two shift functions are called the good-suffix shift
(also called matching shift) and the bad-character shift (also
called the occurrence shift)[4].
Assume that a mismatch occurs between the character
x[i]=a of the pattern and the character y[i+j]=b of the text
during an attempt at position j. Then, x[i=1 .. m-
1]=y[i+j+1 .. j+m-1]=u and x[i]!=y[i+j]. The good-suffix
shift consists in aligning the segment y[i+j+1 .. j+m-
1]=x[i+1 ..m-1] with its rightmost occurrence in x that is
preceded by a character different from x[i][4].

Figure 1: The good-suffix shift, u re-occurs preceded by a

character c different from a.

If there exists no such segment, the shift consists in
aligning the longest suffix v of y[i+j+1 .. j+m-1] with a
matching prefix of x.

Figure 2: The good-suffix shift, only a suffix of u re-occurs in

x.

The bad-character shift consists in aligning the text
character y[i+j] with its rightmost occurrence in x[0 .. m-2].

Figure 3: The bad-character shift, b does not occur in x.

If y[i+j] does not occur in the pattern x, no occurrence of x
in y can include y[i+j], and the left end of the window is

alignedd with the character immediately after y[i+j],
namely y[i+j+1].

Figure 4: The bad-character shift, b does not occur in x.

Note that the bad-character shift can be negative, thus for
shifting the window, the Boyer-Moore algorithm applies
the maximum between the good-suffix shift and bad-
character shift. More formally the two shift functions are
defined as follows.
The good-suffix shift function is stored in a table bmGs of
size m+1.
Let us define two conditions:
Cs(i, s): for each k such that i < k < m, s k or x[k-s]=x[k]
and
Co(i, s): if s <i then x[i-s] x[i]
Then, for 0 <= i < m: bmGs[i+1]=min{s>0 : Cs(i, s) and
Co(i, s) hold} and we define bmGs[0] as the length of the
period of x. The computation of the table bmGs use a table
suff defined as follows:
for 1 <= i < m, suff[i]=max{k : x[i-k+1 .. i]=x[m-k .. m-1]}
For c in : bmBc[c] = min{i : 1 <= i <m-1 and x[m-1-i]=c}
if c occurs in x, m otherwise.
Tables bmBc and bmGs can be pre-computed in time
O(m+) before the searching phase and require an extra-
space in O(m+). The searching phase time complexity is
quadratic but at most 3n text character comparisons are
performed when searching for a non periodic pattern. On
large alphabets (relatively to the length of the pattern) the
algorithm is extremely fast. When searching for am-1b in bn
the algorithm makes only O(n / m) comparisons, which is
the absolute minimum for any string-matching algorithm in
the model where the pattern only is pre-processed[4].

IV. WORKING WITH RULES
A. Structure of a Rule
All snort rules have two logical parts: rule header and rule
options.

Figure 5: Structure of a rule

Keith Chettiar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1965-1968

www.ijcsit.com 1966

The rule header contains information about what action a
rule takes. It also contains criteria for matching a rule
against data packets. The options part usually contains an
alert message and information about which part of the
packet should be used to generate the alert message. The
options part contains additional criteria for matching a rule
against data packets. A rule may detect one type or multiple
types of intrusion activity.

Figure 6: General structure of a rule

The action part of the rule determines the type of action
taken when criteria is met and a rule is exactly matched
against a data packet. Typical actions are generating an
alert or log message or invoking another rule.
The protocol part is used to apply the rule on packets for a
particular protocol only. This is the first criterion
mentioned in the rule. Some examples of protocols used are
IP, ICMP, UDP etc.
The address part defines source and destination addresses.
Addresses maybe a single host, multiple hosts or network
addresses. You can also use these parts to exclude some
addresses from a complete network.
In case of TCP or UDP protocol, the port part determines
the source and destination ports of a packet on which the
rule is applied. In case of network layer protocols like IP
and ICMP, port numbers have no significance.
The direction part of the rule actually determines which
address and port number is used as source and which as
destination.

V. RUNNING SNORT
As mentioned earlier, snort runs in three different modes.
A. Sniffer Mode
For sniffing network traffic, there are three command line
switches:
-d : Dump or display application layer information.
-e : Dump or display data link layer information.
-v : Be verbose.
The -v switch by itself simply outputs TCP headers to the
screen. Adding the -d switch includes the payload
information in addition to the headers. Lastly, the -e switch
includes the data link information.
The command line syntax for running Snort in this mode is
as follows:
#~ snort -vde
If you will be using Snort in this mode, it is important to
note that the -d and/or -e switches requires you to use the -v
switch. The effect of not doing so is the same as not
specifying any switches which force Snort to look in your
home directory for configuration file. If one is not found it
will simply display a listing of the possible command line
options followed by the message, "Uh, you need to tell me
to do something...".
If you have initiated a packet sniffing session with Snort,
you can end it by issuing a <Ctrl + c>.

B. Packet Logger Mode
The command line syntax for running Snort in this mode is
as follows:

#~ snort -i eth0 -l /var/log/snort -K ascii
In the example above, the -l option instructs Snort to put
the log data in the directory specified. In this case:
/var/log/snort. If Snort is in ASCII logging mode, it will
actually create a directory structure in the specified
directory that contains a directory for each IP address it
captures for the duration of the session. In the IP
subdirectory, if places files named after the protocol and, if
applicable, the source and destination port numbers. You
can open these files with the standard command (cat, more,
less, etc.) and view their contents. These are flat ASCII text
files.
You can also use Snort to log data directly to a PCAP
readable binary format with the -b option. This has the
advantage of relieving the Snort process from having to
convert the output to human readable format as it outputs
the capture data. Another advantage is that the PCAP
format can be re-read into the Snort engine with the -r
option.

C. Intrusion Detection Mode
Snort is mostly used for its intrusion detection capabilities.
In a production capacity, Snort would normally be called
up from the command line in 'Detection' mode even if
another instance is already running.
The only difference between running Snort in packet
capture/logging mode and detection mode is the addition of
an option to call up the configuration file: snort.conf. This
file is typically placed in the /etc directory structure.
The command line syntax for running Snort in this mode is
as follows:

#~ snort -c /etc/snort/snort.conf

The -c option allows you to print the location of the
configuration file. The above given example starts Snort in
detection mode, and implements any configuration settings
that has been made in the snort.conf file.

VI. DATABASE OUTPUT AND GRAPHICAL ANALYSIS
A. Unified2 Output Formats

Snort has the ability to produce a fast, binary output
format called the unified2 format. The idea behind this
capability is to have other applications do the work of
processing Snort output, thus relieving the Snort
process. This makes the Snort run more efficiently
since it can concentrate more of its efforts on
processing packets rather than having to also worry
about output.
Unified2 output can produce three types of files:
alert_unified2
log_unified2
unified2
The alert s simply information about the alert, which
includes some of the packet header information in
addition to the alert information, such as alert message,
SID and revision number if so configured in the rule.
The packet log file contains the full packet information
that triggered the alert which also includes the alert

Keith Chettiar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1965-1968

www.ijcsit.com 1967

information. Unified includes both logging styles in a
single, unified file.

B. Barnyard2

Barnyard2 takes advantage of the unified output that is
created and allows to configure the output in a variety
of ways. Like Snort, Barnyard2 can produce output in
many formats including ASCII, PCAP or database
output. Barnyard2 creates and stores all its logs in
/etc/log/barnyard2.
The command line syntax for running barnyard2 is as
follows:
#~ barnyard2 -c /etc/snort/barnyard2.conf -d
/var/log/snort -f snort.u2 -w
/var/log/snort/barnyard2.waldo \ -g snort -u snort
Barnyard2 will startup and then it will process the
alerts in the /var/log/snort, write them to both the
screen and the database, and then wait for more events
to appear in the /var/log/snort directory.

C. Base

BASE stands for Basic Analysis and Security Engine,
which provides a web front-end to the database of
Snort events. Additionally, we use ADODB package to
provide an interface between the GUI and the MySQL
database.
Configuration of BASE is done through its web page:
Browse to "http://<snort-ip-address>/base/index.php"
and click on "setup page" link.

Click on "Create BASE AG" button on the upper right
of the page.
Click on the "Main Page" line.
BASE is now configured and all the events generated
through Snort should be visible.

VII. CONCLUSION

 The motivation of this project is to create an
application to prevent hackers from exploiting a wireless
network. To achieve this objective, a rule based Intrusion
Detection System is used. This Intrusion Detection System
either can be used as a stand-alone application over a given
network or can be coupled with other third-party
interfacing tools for administration, reporting, performance
and log analysis. Apart from BASE, there are other analysis
consoles available such as SGUIL, Snorby, Snort Report
which can be equally be used as a console in a production
environment suiting one’s own needs.

ACKNOWLEDGEMENTS
We are thankful to our project guide and project
coordinator for guiding us in making these project a
success.

REFERENCES
[1] http://www.linuxsecurity.com/resource_files/intrusion_detection/Inc
reasing_Performance_in_High_Speed_NIDS.pdf
[2] http://en.wikipedia.org/wiki/Snort_%28software%29
[3] http://linton.tw/2014/08/17/Install-Snort-from-source-on-Ubuntu/
[4] http://www-igm.univ-mlv.fr/~lecroq/string/node14.htm

Keith Chettiar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1965-1968

www.ijcsit.com 1968

